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Abstract. A model for high spin/ low spin transitions in solid is presented. It is assumed that interaction
between molecules is only due to the dependence of the crystal elastic constants on the electronic states
of the molecules. This work is performed for a linear chain of molecules modeled as atoms each with two
electronic states. Only adjacent atoms are linked by springs. We suppose that the elastic force constant of
the springs can have three values, corresponding to the electronic states of the particular atoms. In this
article, we obtain the exact expression for the Hamiltonian of the atom-phonon coupling assumed. We then
deduce that this coupling creates an effective field on each atom and an exchange-like interaction between
the two first neighbouring atoms. Here we only study the effect of the field. The phase diagram for the
chain is established. We show that the chain does or does not exhibit a first order transition, depending
on the elastic force constant values. The results obtained in this study could be used for chain-like spin
conversion compounds, or for any spin conversion compound if we assume that only one type of spring
(e.g. those linking nn, or nnn, etc.) have an elastic force constant which varys with the electronic states of
atoms linked by such springs.

PACS. 63.20.Kr Phonon-electron and phonon-phonon interactions – 63.50.+x Vibrational states in dis-
ordered systems – 64.60.-i General studies of phase transitions

1 Introduction

In some molecular crystals containing transition metal
ions (d4 to d7) in an octahedral environment, the spin
value of the fundamental level of the metal ion may be
lower than that of the first excited level. The magnetic
susceptibility then has an unusual temperature depen-
dence related to a thermally induced change of the popu-
lations of the levels [1]. In the literature the phenomenon
is named spin crossover (or spin conversion). For example,
in iron (II) complexes the low spin value is S = 0 and the
high spin value is S = 2, and the electronic degeneracy
is one for the ground level and 15 for the excited level
(product of an orbital triplet and a spin quintet). The dis-
tance in energy between the levels is typically in the range
500–1000 K.

Mössbauer-effect results and magnetic susceptibility
measurements are of great value in studying the thermal
variation of nHS, the high-spin fraction. On the basis of
such experiments two kinds of spin crossover have been
identified [1–3]:
- the parameter nHS increases gradually with increasing
temperature and does not show a thermal hysteresis;
- the parameter nHS displays a discontinuity with increas-
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ing temperature and shows a thermal hysteresis. Such be-
haviour is characteristic of a first order phase transition
(designated as spin transition).
In both cases of spin crossover, at low temperature (LS
phase) nHS is very near to zero and at high temperature
(HS phase) very near to one. Moreover, when going from
(LS) to (HS) states, Mössbauer spectrometry data show
that the crystal Debye temperature is reduced by about
10 per cent (this parameter is typically near 150 K).

It is well known that the characteristic of spin
crossovers is cooperative behaviour of the intermolecu-
lar interactions, and different models have been proposed
to describe this [3–9]. In the model of Wajnflasz and
Pick [8,9], the molecules are considered as Ising-like spins
interacting with a ferro-like interaction. Ten years ago,
Bousseksou et al. [10] showed that the unusual behaviour
of “two-step” spin conversion systems can be described by
introducing an antiferro-like interaction into the Wajnflasz
and Pick model [9].

The Ising-like model is easy to use, and gives a correct
description of the main features of spin conversion phe-
nomena. However in the model of Wajnflasz and Pick as
in that of Bousseksou et al. the physical origin of the inter-
molecular interactions is not specified, and the exchange-
like constants included in both models are considered as
phenomenological parameters.
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From heat capacity studies of some spin conversion
compounds, Sorai and Seki [11] have concluded that there
is a significant coupling between the molecular electronic
states and the phonon system and that excitation of
phonons is much easier in the (HS) state. This result is
certainly related to the dependence of the molecule size
on its electronic state.

In the Zimmermann and König model, the origin of the
cooperation is the dependence of the ligand field acting on
metal ions in the molecular electronic states. However, to
take into account the experimental results of Sorai and
Seki, they introduced, in addition to the previous interac-
tion, the assumption that the crystal Debye temperature
depends on the high spin fraction [7]. In the conclusion of
their study, they underline the importance of the phonon
contribution in (LS)/(HS) transition. We think that their
study involves a description of the atom-phonon coupling
which is too macroscopic. Moreover they have not tried
to see if the atom-phonon coupling by itself could lead to
a first order phase transition. It is thus interesting to test
if the assumption that the crystal elastic force constants
depend on the electronic states of the molecules, can in-
troduce intermolecular interactions leading to first order
phase transition in spin crossover crystal.

It is known that in molecular crystals the values of the
intra-molecular elastic force constants are higher than the
inter-molecular values. Moreover, the spin conversion phe-
nomenon takes place at low temperature, around 100 K.
So, for both reasons it is sufficient to study the coupling
between the molecules and the crystal acoustic phonons.

We model the molecules as identical atoms each with
two electronic states and we assume that the elastic force
constant of the spring linking two atoms depends on the
electronic states of the particular atoms concerned. In this
paper we apply our assumption to a linear chain of atoms
with effective springs connecting only adjacent atoms. We
can then obtain and study the exact expression of the
atom-phonon coupling Hamiltonian.

Many experimental studies have been carried out on
spin-conversion compounds with structures comprising
chains (see [12] and references in it). The results obtained
here could be applied to such 1D systems. In the conclu-
sion we discuss the condition under which this study can
be used in any lattice.

The aim of this study is to see whether the form of
the the atom-phonon coupling we use is sufficient to give
rise to a first order phase transition in the chain and to
investigate the mechanism that drives this transition.

In Section 2 we present the model and the chain
Hamiltonian, in Section 3 we describe the study method
used, in Section 4 we give the results obtained and the last
section is devoted to the conclusion.

2 The model and the chain Hamiltonian

Let us consider a linear chain of identical atoms, each
with a fundamental electronic level (a) with degeneracy
ga = 1 and with an excited level (b) with degeneracy
gb = r (r is the product of orbital and spin degeneracies).

We call ∆ the difference in energy between the two levels.
Neighbouring atoms i and j (= i ± 1) are assumed to
interact with an elastic force constant eij , which is equal
to λ when both atoms are in level (a), ν when they are
both in (b) and µ when one is in level (a) and the other
in level (b). We suppose that ν is smaller than λ.

To each atom i, (i = 1 toN), we associate a fictitious-
spin σ̂i which has two eigen-values σi = ±1. Eigen-
value −1 (resp.+1) corresponds to electronic level (a)
(resp. (b)).

The total Hamiltonian of the chain is the sum:

H = Hspin +Hphonon (1)

where Hspin, the spin Hamiltonian, is

Hspin =
N∑
i=1

∆

2
σ̂i (2)

and Hphonon, the phonon Hamiltonian, is

Hphonon = Ec +Ep (3)

where Ec is the total kinetic energy of the chain and Ep

its elastic potential energy. The potential energy can be
written

Ep =
N∑
i=1

1
2
ei,i+1(ui+1 − ui)2 (4)

with

ei,i+1 =
λ+ 2µ+ ν

4

+
ν − λ

4
(σ̂i + σ̂i+1) +

λ− 2µ+ ν

4
σ̂iσ̂i+1. (5)

In these expressions, ui is the displacement of the
ith atom from its equilibrium position which we assume
to be independent of the electronic states of (i) and its
neighbours. Moreover we assume the periodic condition,
up+N = up for p = 1, 2, . . . , N .

The chain potential energy, Ep, can be decomposed
into three terms

Ep = V0 + V1 + V2 (6)

with

V0 =
N∑
i=1

λ+ ν + 2µ
8

(ui+1 − ui)2, (7)

V1 =
N∑
i=1

ν − λ
8

[
(ui − ui−1)2 + (ui+1 − ui)2

]
σ̂i (8)

and

V2 =
N∑
i=1

λ− 2µ+ ν

8
(ui+1 − ui)2

σ̂i.σ̂i+1. (9)
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The energy V1 is the sum of one-spin interactions, and
has a Zeeman-like form. Each spin σ̂i is submitted to an
effective field hi given by

hi =
ν − λ

8
[
(ui − ui−1)2 + (ui+1 − ui)2

]
. (10)

From the hypothesis ν < λ, this field favours the eigen
value +1 ((b) level).

The energy V2 is the sum of two-spin interactions, and
has an exchange-like form. The exchange parameter Jii+1

between spin σi and σi+1 is

Jii+1 =
λ− 2µ+ ν

8
(ui+1 − ui)2

. (11)

The sign of this parameter is the same as that of the ex-
pression (λ−2µ+ν). For example, when Jii+1 is negative,
V2 is a ferromagnetic-like interaction. In this article we are
concerned by the case V2 = 0. So, we adopt the condition

λ+ ν − 2µ = 0. (12)

3 Effective elastic force constant K:
Variational method

3.1 Self-consistent equation

If we replace the elastic force constant ei,i+1 by an effective
elastic force constant K which does not depend on the
chain sites, then the thermal mean value of the parameter
(ui+1 − ui) does not depend on the site i, and the field
created by the phonon on the spins is uniform along the
chain. We then obtain an spin Hamiltonian which is easy
to study.

We obtain the expression of the effective elastic con-
stant K and that of the uniform field h by a variational
method [13]. The variational Hamiltonian H0 is given by:

H0 = H0s(h) +Hph(K) (13)

with

H0s =
N∑
i=1

−hσ̂i (14)

and

Hph(K) =
N∑
i=1

p2
i

2m
+

N∑
i=1

K

2
(ui+1 − ui)2. (15)

It is clear thatH0s(h) is the Hamiltonian ofN independent
spins in the presence of the uniform field h, and Hph(K)
is the Hamiltonian of a linear chain of atoms attracting
one another with an elastic force of constant K.
One can write

H = H0 +H −H0 (16)

In the approximation method that we use, H−H0 is con-
sidered as a perturbation compared to H0. Hence, the sta-
tistical physics calculations can be done by using the den-
sity matrix associated with H0. This density matrix gives

〈σ̂i〉 = m for i = 1, N (17)

and

m =
gbeβh − gae−βh

gbeβh + gae−βh
(18)

where β = 1
kT . It is clear that the range of variations of

m is from −1 to 1. The equation (18) is called the self-
consistent equation.
At the first order perturbation calculation, F̃ , the free
energy of H is given by

F̃ = F0 + 〈H −H0〉0 (19)

where F0(T, h,K) is the free-energy associated with H0

and 〈H − H0〉0 is the thermal mean value calculated by
using the density matrix associated with H0 at tempera-
ture T .
If we call Fth the thermodynamical free-energy associated
with H, it can be shown [13] that

Fth ≤ F̃ . (20)

So, to improve our approximation, we must lower the vari-
ational free energy, F̃ , by choosing the parameters h and
K such as to minimize the function F̃ (T, h,K) at a given
temperature (all the model parameters r, ∆,λ, µ, ν being
constant, and m being related to h through the Eq. (18)).

The minimization of F̃ versus h and K, leads to the
equations:

K =
2µ+ λ+ ν

4
+
ν − λ

2
m (21)

h = −∆
2
− 1
K

ν − λ
4

1
N
〈Hph(K)〉T . (22)

Up to now, we have only taken into account one phonon
polarisation. For simplicity, we assume that the phonon
energy is independent of the polarisation. Then, taking
into account the three polarisations, equation (22) be-
comes:

h = −∆
2
− 3
K

ν − λ
4

1
N
〈Hph(K)〉T . (23)

The parameter K is the effective elastic force constant.
We can show that when condition (12) is satisfied it is
positive for −1 ≤ m ≤ 1.

3.2 Chain isotherms study

When we use the equations (21, 23) in F̃ , we obtain F ,
the chain free-energy corresponding to the approximation
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made in this study. The expression of F is given in the
Appendix.

We have studied the chain isotherms in the ∆ − m
plane. For this purpose, we fix the value of the tempera-
ture and that of the model parameters λ, µ, ν and r, and
we solve the self-consistent equation for different values
of ∆. It is worth noticing that the solutions of the self con-
sistent equation (Eq. (18)), are the extrema of the func-
tion F (m) obtained by fixing in the right hand of equa-
tion (41), the temperature, the phonon parameters λ, µ, ν
and the electronic parameters r and ∆ and by using the
relations (21) and (23).

We verify by numerical study the following results:

– when the self-consistent equation has only one solu-
tion, this solution is a minimum of F (m) (stable ther-
modynamic state);

– when the self-consistent equation has several solutions
(in our case three), the intermediate solution corre-
sponds to a maximum of F (m) (unstable thermody-
namic state), and the two others are minima of F (m)
(the lower minimum is the stable thermodynamic state
and the other is a metastable state). When the two
minima of F (m) have the same value, both solutions
are equally stable which identifies a first order phase
transition. For the two stable solutions, one is near 1,
corresponding to a (b)-rich phase, and the other is near
−1 corresponding to an (a)-rich phase.

When the parameters λ, µ, ν and r are fixed, F appears
in equation (41) as a function of ∆,T and m. However,
as m verifies the self consistent equation (Eq. (18)), m is
a function of ∆ and T . Hence the free energy F is only
function of ∆ and T . The differential of F is given in the
Appendix.

From the isotherm study we deduce the chain phase
diagram in the ∆− T plane.

Our study of chain isotherms in the ∆ − m plane is
similar to the study of real gas isotherms in the P − V
plane and our phase diagram is similar to that of real gas
in the P − T plane.

4 Results

In order to numerically solve equation (18), we take
~ωM(λ) as the unit of energy, where ωM(λ) is the max-
imum phonon frequency when the chain is periodic with

an elastic force of constant λ (ωM(λ) = 2
√

λ
m where m is

atom mass). We introduce the following reduced parame-
ters:

• reduced temperature:

t =
kT

~ωM(λ)
(24)

• the dimensionless electronic excitation energy

δ =
∆

~ωM(λ)
(25)

• the elastic force constant ratio

x =
ν

λ
(26)

(we have assumed that 0 < x < 1),
• the dimensionless parameter y defined by:

µ =
λ+ ν

2
+
λ− ν

2
y (27)

with y = 0 from condition (12).

4.1 Phase transition at zero temperature

At 0 K the solutions of the self-consistent equation are
m = ±1. For the solution m = 1, K = ν and the chain
energy, E+, is given by

E+ = 3〈Hph(ν)〉0 K +N
∆

2
· (28)

For the solution m = −1, K = λ and the chain energy,
E−, is given by

E− = 3〈Hph(λ)〉0 K −N
∆

2
· (29)

In these expressions, 〈Hph(ν)〉0 K and 〈Hph(λ)〉0 K are the
zero-point energies of the chain with elastic force constants
ν and λ respectively.
When ∆ is zero, E+ is lower than E− for ν < λ. So, the
chain is in the (b) phase. When ∆ increases, E+ increases
and E− decreases. So, E− is lower than E+ when

∆ > ∆s (30)

with

∆s = 3
〈Hph(λ)〉0 K − 〈Hph(ν)〉0 K

N
· (31)

So, the phase transition between the (b) and (a) phases
happens for ∆ = ∆s. This transition is first order for both
phases have different values of m and the same energy
value when ∆ = ∆s.

It is easy to show that the zero-point energy of a peri-
odic chain with an elastic force of constant e is

〈Hph(e)〉0 K = N
2
π

~ωM(e)
2

(32)

where ωM(e) is the maximum phonon frequency of the
chain. So, using this equation and the parameter x we can
write

∆s = 3
2
π

(1−
√
x)
~ωM(λ)

2
; (33)

or, using the parameter δ,

δs =
3(1−√x)

π
· (34)

It is worth noticing that the threshold value δs depends
only on the value of the parameter x.
The chain phase diagram at 0 K is shown in Figure 1.
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Fig. 1. The chain phase diagram at 0 K. The phase transition
is first order, and the coexistence curve (full line) is given by
the relation (34).

4.2 General results for isotherm at T 6= 0 K

The self-consistent equation of our model can be discussed
graphically in the same way as the well known Curie-
Weiss self-consistent equation for ferromagnetic transi-
tion: when we fix the values the parameters λ, µ, ν, the
solutions of the self-consistent equation for the set of val-
ues (T = T1,∆ = ∆1 and r = r1) are the same as for
the set (T = T1,∆ = ∆2 and r = r2) when both sets are
related by the relation

kT1 ln r1
2

− ∆1

2
=
kT1 ln r2

2
− ∆2

2
· (35)

The parameter r is the degeneracy of the excited level.
So, studying the chain isotherms for r = 1, we can obtain
the isotherms for any value of r by using the transforma-
tion (35). In the following, we have studied the chain only
for r = 1.

4.3 Isotherms and phase diagram

4.3.1 Isotherms for x = 0.3 and r = 1

We have found that for t < tc the isotherms display a
discontinuity in m as shown in Figure 2. This discontinu-
ity becomes progressively smaller as t approaches tc. For
temperature values higher than tc this discontinuity dis-
appears as shown in Figure 3. For x = 0.3 and r = 1, tc
is equal to 0.075. The discontinuity in m corresponds to a
first-order phase transition and tc is the critical tempera-
ture.

From the isotherms study, we can deduce the chain
phase diagram. For x = 0.3 and r = 1, this phase diagram
is shown in Figure 4.

For a first order phase transitions, the slope of the
coexistence curve is given by the Clapeyron relation. In
our model, the intensive parameter associated with the
extensive parameter Nm is ∆

2 , as shown in the expression

Fig. 2. The chain isotherm for y = 0, x = 0.3, r = 1 and
t = 0.06. The region RB is in phase (b). The region WA is
in phase (a). The plateau BA corresponds to a mixture of the
two phases. The free-energy values of the points B and A are
equal. The ordinate of the horizontal plateau is δ = 0.4279.
Open circles correspond to metastable solutions of the self-
consistent equation.

Fig. 3. The chain isotherm for y = 0, x = 0.3, r = 1 and
t = 0.077. The parameter m varies continuously from 1, phase
(b), to −1, phase (a). The temperature of this isotherm is just
higher than the critical temperature tc = 0.075.

of the spin Hamiltonian, Hspin (Eq. (2)). So, in our model,
the Clapeyron equation reads

d δ2
dt

=
sb − sa

mb −ma
(36)

where mb and ma are the values of m in each both phases
at the transition, that is at the B and A ends of the
isotherm plateau (see Fig. 2). Similarly, sb and sa are the
entropies per atom at the ends of the plateau.

As m decreases when the chain passes from phase
(b)(m ' 1) to phase (a)(m ' −1), the quantity mb −ma

in relation (36) is always positive. So, from the Clapeyron
relation, the sign of the slope of the coexistence curve is
the same as that of the entropy discontinuity, sb − sa.
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Fig. 4. The chain phase diagram for y = 0, x = 0.3 and r = 1
(N = 2000), built up from the chain isotherms study. The full
line is the coexistence curve which ends at the critical point C.
The coordinates of C are tc = 0.075 and δc = 0.4219. Below
the coexistence curve, the chain is in phase (b) and above in
phase (a). For the slope of the coexistence curve at the point
M (t = 0.06 and δ = 0.42791) we find −0.33 by using the
Clapeyron equation and to −0.29 by using the variation of the
δ values between t = 0.06 and t = 0.07 along the coexistence
curve. The small discrepancy is due to the large variation of t
between t = 0.06 and t = 0.07.

The chain entropy can be analysed as the sum of the
phonon and spin entropies. That is,

sb − sa = (sb − sa)ph + (sb − sa)sp. (37)

The expressions for the two entropies are given in the
Appendix.

When the chain state passes from the (b) to the (a)
phase, the effective elastic force constant, K, increases
from a value near ν to a value near λ. For ν < λ, the
chain vibrational frequency values are smaller in phase
(b) than in phase (a). So, at a given non zero tempera-
ture, the number of occupied vibrational levels in phase
(b) is higher than that in phase (a). Hence, at the tran-
sition, the phonon entropy discontinuity, (sb − sa)ph, is
always positive. It is worth noticing that this discontinu-
ity value increases as x decreases. At 0 K, the entropy of
the phonon system is zero whatever the value of the elas-
tic force constant while the phonon entropy discontinuity
is zero at 0 K.

As for (sb − sa)sp, the spin entropy discontinuity, it is
clear that, at 0 K, this quantity is equal to zero for r = 1
(and to ln r for r > 1). However, for T 6= 0 K, the sign of
this quantity is not easy to predict. We have verified by
numerical computation that (sb− sa)sp is negative at low
temperature(t = 0.01) and at high temperature (t = 0.06)
in the case of the Figure 4. So, the sign of the slope of the
transition line in Figure 4, results from the competition
between a term that is positive or zero, (sb − sa)ph, and
a term which is negative or zero, (sb − sa)sp. This is the
reason why the sign of the coexistence curve slope changes
in Figure 4.

Fig. 5. The chain phase diagram for y = 0, x = 0.2 and r = 1.
The coexistence curve does not display a critical point (or tc
is infinite).

Fig. 6. Values of tc, the critical temperature in reduced unit,
vs. x. The open and dark circles are tc values obtained by
solving the self consistent equation for y = 0 and for different
values of x (the tc values do not depend on r). The coordinates
of the point I are xi = 0.225 and tc = 0.43. The abscisse xi is
a threshold value: for x < xi the first order transition line in
δ-T diagram does not display a critical point (or tc is ∞); for
x ≥ xi, tc has a finite value. Moreover, tc tends towards zero
when x is increased. The vertical dotted line is the boundary
between the two chain behaviours (with or without critical
point).

4.3.2 Varying x

We have studied chain isotherms for x = 0.2 and r = 1.
From this study we deduce the phase diagram shown in
Figure 5. The coexistence curve does not display a critical
point.

The values of the chain critical temperature for differ-
ent values of the parameter x are shown in Figure 6. These
values are obtained by studying chain isotherms for dif-
ferent values of x, keeping r = 1 and y = 0 (in fact, the tc
values do not depend on the r values). There is a threshold
value xi such that the coexistence curve does not display
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a critical point for x smaller than xi.
The graphical study of the self consistent equation leads
to study the intersection of two curves: the familiar hy-
perbolic tangent curve, m = tanh(u), and a curve (C),
u = f(m), the abscissa u being a parameter depending on
the temperature, on the phonon parameters and on the
electronic parameters r and ∆. The curve (C) is not a
straight line as in the graphical study of the Curie-Weiss
equation for a ferromagnetic transition. When ∆ varies,
all the others parameters being constant, the curve (C) is
translated along the u-axis (this is different compared to
the Curie-Weiss situation). Depending on the shape of the
curve (C) and on its position along the u-axis, the num-
ber of intersection point is one or three. The curve (C) is a
monotonous increasing function, and we can characterize
its shape by a slope mean value. We verify by numeri-
cal calculation that the hyperbolic tangent and the (C)
curves have only one intersection point when the slope
mean value of (C) is higher than unity and that they have
three intersections points when this slope mean value is
lower than unity. So we deduce this rule: an isotherm dis-
plays a plateau (or a phase transition) when the following
inequality is satisfied

hph(m = 1)− hph(m = −1)
2

> kT (38)

where kT is the Boltzmann factor, the factor of 2 comes
from the variation of m between the two phases and hph

is the phonon part of the mean field h, that is

hph =
3λ
K

1− x
4

1
N
〈Hph(K)〉T . (39)

It is clear that increasing the temperature, the inequal-
ity (38) will be violated and the first order transition dis-
appears. So, Tc, the chain critical temperature value, is
the solution of the equation

hph(m = 1)− hph(m = −1)
2

= kT. (40)

When equation (40) has no solution, the chain phase dia-
gram does not have a critical point.

We have verified that the values of the chain criti-
cal temperature obtained by solving equation (40) are in
agreement with those obtained by studying the self consis-
tent equation, (Eq. (18)), i.e. by doing the chain isotherms
study.

5 Conclusion

In this article, we first obtain the exact expression for the
Hamiltonian of the atom-phonon coupling assumed. From
this expression we show that the used atom-phonon cou-
pling creates: (i) an effective field on each atom, which
favours the (HS) state and (ii) an exchange-like inter-
action between two nearest neighbours, which can be a
ferro- or an antiferromagnetic-like interaction, or which
can be equal to zero, depending on the the values of elastic

force constant. Both interactions are temperature depen-
dent via the atoms displacements. It is worth noticing that
both interactions have not been studied by Zimmermann
and König.

In this study we have only considered the case where
the exchange like interaction is zero.

At a given temperature, the value of the elastic force
constant varies along the chain. In this article, we replace
the exact elastic force constant by an approximate one,
K, which has the same value at all sites on the chain.
With this approximation, the field acting on the atoms is
uniform. The expressions of K and h, the uniform field,
are obtained by the variational method. We then can show
that the effective elastic force constant K depends on the
high spin fraction (or on m). This result is an assumption
in the Zimmermann and König model.

We have shown that the chain exhibits a first order
phase transition with or without a critical temperature,
depending on the ratio of strengths of the elastic force
constant in the excited and the fundamental electronic
states. We have shown that the value of the critical tem-
perature does not depend on the electronic parameters ∆
and r.

As the phases (a) and (b) belong to the same symme-
try group, the presence of a first order transition line is not
surprising. It is however surprising that there is no critical
point. We note, that the absence of a critical point in the
coexistence curve of two phases is generally attributed to
the difference in symmetry of the two phases (for exam-
ple the solid-liquid coexistence curve). In our study the
critical temperature value may go to infinity because the
Zeeman interaction related to the field created by phonons
can be made to vary, at high temperature, as fast as the
thermal energy, kT .

The field created by phonons on the atom i is pro-
portional to the parameter (ui+1 − ui)2, where ui is the
displacement of the atom i. The value of this parameter
depends on the dynamic matrix of the chain, that is on
the electronic state of all the chain atoms. So the Zeeman
interaction related to the phonon field is not short-ranged.
Therefore, there is no exact result in the statistical-physics
which prevents the existence of a phase transition in this
model.

To have a first order transition in Ising-like mod-
els [8–10], it is necessary to assume the existence of an
exchange-like interaction and that r, the degeneracy of
the excited atomic level is bigger than unity. Indeed, this
degeneracy creates an effective field which favours the ex-
cited level, HS level, and which have the value kTLn(r).
So, in Ising-like models, the values of the exchange-like pa-
rameter and that of r are chosen to provide the best agree-
ment with experimental observations. When the value of
r is very large (r = 400), intra molecular degeneracies are
invoked. This study shows that, in our model, the con-
dition r > 1 is not necessary to have a first order phase
transition. Moreover the assumed atom-phonon coupling
creates an exchange-like interaction and an effective field
which favours the (HS) level.
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Following the study of Sorai and Seki [11], we may take
for the unit of energy, ~ωM(λ), the value 50 cm−1, and for
the transition temperature the value 170 K. This temper-
ature corresponds, in reduced temperature units, to the
value 2.4. From Figure 5, we deduce for the reduced pa-
rameter δ, the value 4.5 and for the parameter ∆, 324 K.
This calculated value has the same order of magnitude as
the experimental data which range from 500 to 1000 K.
The above value of ∆ has been calculated for r = 1. If we
take for the parameter r the value 15, using equation (25),
we obtain for ∆ the value 784 K which is well in the ex-
perimental data range.

The previous discussion allows us to conclude that the
atom-phonon coupling used in this model could play an
important role in spin conversion phenomenon. However,
it is necessary to introduce lattice deformation into the
model.

The study of the exchange-like interactions can be car-
ried out by using the expression given by the transfer ma-
trix method for the variational free energy.

The method used in this article to study atom-phonon
coupling can be applied to any lattice if we assume that
only one type of spring, e.g. those linking nearest neigh-
bour atoms, have an elastic force constant which depends
on the electronic states of these atoms. In the case where
several types of springs have elastic force constants vary-
ing, the discussion of the phase diagram can be very com-
plicated due to the great number of parameters. In that
case a more global method must be found.

Finally, it is worth noticing that atom-phonon coupling
is usually described by means of atoms displacements
which modify the electronics interactions (see magneto-
elastic coupling [14–16], or relaxation studies [17]). This
corresponds to the first term in the development of the
crystal potential energy considered as a function of atoms
displacements. In this study we do not take into account
this term but only the following term in the development.

We are indebted to J.P. Carton and K. Boukheddaden for help-
ful discussions.

Appendix: Chain thermodynamic functions
in the mean field approximation

In the mean field approximation, F , the chain free-
energy is

F = −NkT lnA

+ 3kT
∑
α

ln
(

2 sinhβ
~ωα

2

)
+N

(
∆

2
+ h

)
m (41)

where β = 1
kT , m verifies equation (18),

∑
α is the sum

over phonon normal modes and

A = gb expβh+ ga exp−βh (42)

h = −∆
2

+
3(λ− ν)

4NK
〈Hph(K)〉T (43)

K =
2(λ+ ν)

4
− (λ− ν)m

2
· (44)

Taking the infinitesimal variation of F , we find

dF = −SdT +Nmd
∆

2
(45)

where S, the chain entropy, is given by

S = Sspin + Sph (46)

with

Sspin = −N hm

T
+Nk lnA (47)

and

Sph =
3〈Hph(K)〉

T
− 3k

∑
α

ln (2 sinhβ
~ωα

2
). (48)

The spin entropy is that of N independent spin (±1) in-
teracting with the applied field h. The phonon entropy is
that of a periodic chain with elastic force of constant K.
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